Code: 20ME4702E

IV B.Tech - I Semester - Regular Examinations - DECEMBER 2023

INDUSTRIAL ROBOTICS (MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.					
					Marks					
	UNIT-I									
1	a)	Explain anatomy of robot with neat sketch.	L2	CO1	7 M					
	b)	Classify the types of robots based on work	L2	CO1	7 M					
		volume.								
	OR									
2	a)	Explain the working of Stepper motor.	L2	CO1	7 M					
	b)	How can a robot end effectors be used as a	L2	CO1	7 M					
		tool? Explain.								
UNIT-II										
3	a)	A vector $V = 2i+5j+3k$ is rotated by 60°	L2	CO1	7 M					
		about Z-axis and translated by 3, 4 and 5								
		units in the X, Y and Z directions								
		respectively. Find the vector with reference								
		to the reference frame.								
	b)	Derive the Lagrange Euler formulation for	L3	CO2	7 M					
		the dynamic model of a manipulator.								

_		OR			
4	a)	Determine the manipulator Jacobian matrix.	L2	CO1	7 M
	b)	What is the role of D-H rotation? Explain its	L3	CO2	7 M
		importance solving forward Kinematics.			
		UNIT-III			
5	a)	Explain trajectory planning in robots and its importance.	L2	CO1	7 M
	b)	What are the methods of programming a robot? Explain in brief.	L2	CO3	7 M
		OR			
6	a)	The second joint of a SCARA manipulator is required to move from $\theta_2 = 30^{\circ}$ to 120° in 10 seconds. Find the cubic polynomial to generate the smooth trajectory for the joint.	L3	CO1	7 M
		What is the maximum velocity and acceleration for this trajectory?			
	b)	Explain various important features of robot programming languages.	L2	CO3	7 M
		UNIT-IV			
7	a)	What do you understand by 'slip sensors' for robot grippers?	L2	CO1	7 M
	b)	Explain Range sensor with a neat sketch.	L2	CO4	7 M
		OR			
8	a)	Explain Acoustic sensor with a neat sketch.	L2	CO1	7 M
	b)	Briefly explain the tasks performed by a robotic vision system.	L2	CO4	7 M

UNIT-V								
9	a)	Discuss robot application for welding a	L2	CO1	7 M			
		machine loading.						
	b)	Describe the spray coating operation with	L2	CO4	7 M			
		robot system.						
OR								
10	a)	Differentiate between industrial and micro	L2	CO1	7 M			
		robots.						
	b)	List out the recent developments in robotics.	L2	CO4	7 M			